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An exact solution of the problem of current distribution in a nonuniform plas’ma 

in a magnetic field between nonconducting planes is presented. Stratified plas- 
ma whose parameters vary in alternate cells is examined. In the here considered 

problem of a two-phase model of nonuniformities the electric field pattern is 

periodic and is defined by the interrelationship of local properties of plasma 

in cells, and also by the cell geometry. The determination of the electric field 
reduces to a step-by-step solution of two Riemann boundary problems of an even 
doubly-periodic function. The derived solution is used for calculating the effec- 

tive conductivity and the Hall parameter, which makes it possible to establish, 
within the limits of the exactly solvable electrodynamic model, the anomalous 
properties of plasma in a strong magnetic field. Formulas for calculating a 
plane electric field in an anisotropically conducting medium in a rectangular 

region in the presence of two perfect electrodes are derived from the general 
solution as a particular case. 

1, Ths periodic field pattern in a band. In conditions ofconduction 
anisotropy induced by the Hall effect the current distribution is sensitive to the nonuni- 

formity of parameters of the medium. In a strong magnetic field even small variation 

of the medium properties substantially affect the electric field pattern. 

Let us consider the stratified nonuniformity of parameters of a medium, which may 

occur, for example, in magnetohydrodynamic installations in which the gas flows through 
a channel with alternate regions of high and low temperature or, when easily ionized 

substances are intermittently supplied to the gas. Such periodic nonuniformities of the 
moving plasma are sometimes deliberately induced in magnetohydrodynamic energy 
transformers of alternating currents. 

It should be noted that stratification of the conductivity of a medium is a fairly com- 
mon phenomenon. It is observed, for example, when an electric current passing through 
a gas leads to ionization instability ; the discharge of a positively charge column is usu- 
ally stratified in a wide range of gas pressure variation. Another example of stratified 
field pattern is provided by semiconductors with nonuniform distribution of impurities. 

For the investigation of electric fields in such systems we use the following model of 
the problem. Let the medium in which the Hall effect is present be in a magnetic field 
between two nonconducting parallel planes, and let the parameters (conductivity and 
the Hall coefficient) of the medium have two different values in consecutive rectangu- 
lar cells (Fig. 1). 

Let us examine the two-dimensional current distribution with the use of the following 
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system of equations : 

3 * j+FJxH-sE=O, ';.j=o, 'JxE=O (4.1) 

where the generally accepted notation is used. We assume that in the band 0 < x < h 
the parameters j. E. H. (3 and fi are defined by the following specified functions of 
coordinates : 

j = (ix@, y), i&, Y), Q E = (Es (x, y), E,,(x, y), O), H = (0, 0. ff: (x)) 

51, PI, 111 for O<s<h. 2(X-l)/<!/< (‘7h.-1)l 

5, p, H = i and - 2kl< - y < (I - 2k) 1 

I 

52, 32, HZ for 0 < 5 < II, (2; - I) I< !I < 2GI 
and (I-2k)I<--<<(I --Ii)1 

Hence the problem admits periodic variation of the magnetic field. The heterogeneous 

properties of the medium may be caused by the variation of 11 or by some other factors. 
In the particular case the magnetic field is assumed to be uniform throughout the band. 

With these assumptions we can introduce in each cell the complex current 

I Y 

Fig. 1 
. 

is assumed to be specified. 

j (4 = ix (2, y) - ii, C.1.. :I) 

where (z = x -- iy) To formulate boundary conditions 
for j (z) it is sufficient to consider only two adjacent 
cells, since, owing to the problem symmetry, the field 

pattern repeats itself (Fig. 1). At the cell boundaries the 

following relationships must be satisfied: 

i,i = (1 along cZn and bc (1.2) 
_ih2 = 0 along nd’ and ~‘b 

i,i = i!j2, EX1 =~ K,., _ along rrb. I’d and d’c’ 

where subscripts 1 and 2 denote parameters of two adja- 

cent cells. The positive direction of following around 

the cell boundary is.as usual,tilat ill wilicit the cell region 
remains’on the left. The first two expressions in (1.2) 

determine the condition of absence of current flow through 
the insulating planes and the remaining two follow from 
the general conditions at the boundary separating two 
heterogeneous media. The total current flowing along 

the band il 

I = ,\’ jV (5) d.~ (1.3) 
II 

Let US pass to the solution of our problem. We denote the rectangle nbcd by St and 

by S- the rectangle symmetric to it about the real axis, and introduce two auxilliary 
piecewise-holomorphic functions y, (z) and Yz (z) 

i 

Yr+ (2) = i1 (2) = i,i (5, Y) - GUI (5, Y), s E .T+ 

‘VI (3) = 
Y,- (2) = i; (2) = ix1 (5, - 14 + iiul (2, - ?A i E .S- 

T* (2) = 
Y2+ (z) = Tl(z)=jx2(x, -Y)+ iiv2 (z, -Y), z E S+ 

Y,-(z) = j,(z) =js2 (I, Y) - ii,, (5, Yh z E 5- (1.4) 



We assume that functions (1.4) are automorphic 

‘Yi (2) = ‘ri (z’) (i = 1, 2) 

with respect to the group of substitutions 

_f _ = .: -t 2mh + 2niL, z’s__I (1.5) 

throughout the whole plane of the complex variable. Each of the rectangles S+ and s 
represents a fundamental region of group (1.5) whose basic function is the Weierstrass 

elliptic function y (2). The latter can have any value in the fundamental region only 

once PI . 
To investigate the stated problem of field we use the theory of the Riemann boundary 

value problem for automorphic functions, as proposed in CL, 31. We denote by :’ (2) the 

normal component of current jq (t) at cell boundaries L, = bc -/- da, L, = ad’+ 
c’b and Ls = ab -L. cd + u’c’. Using (1.4) and (1.5). from the first three formulas 
in (1.2) we obtain two nonuniform Riemann boundary value problems for four doubly- 

periodic functions 

i 

Y,f (1) = - Yr- (t) along Lt 

Iv,+ (t) = Yr- (t) - 2ir (t) along L, 

{ 

‘rs+ (t) = - YIP,-(t) along Ls (1.6) 

YIp2+ (t) = ‘Ys- (t) + 2ir (t) along L, 

(t E L = Ll -I- L-2 + L3) 

We assume that y (t) satisfies Holder’s condition and consider solutions which outside 

the boundary line L have the property 

‘Pi (2) = ‘Ip, (;) (i = 1, 2) (1.7) 

Problems of holomorphic functions in rectangles S+ and S- , which differ only by the 
sign of their free term, correspond to the Riemann problems (1.6). This implies the 
symmetry of the electric current pattern about the real axis. The solution of problems 

(1.6) (which are omitted for brevity) yields for currents along I;, the relationships 

j,i (t) = - jXz (t), t E LB (1.8) 

Conditions (1.2) and (1.8) provide the complete system of boundary values for functions 

jl (2) (i = 1, 2) in rectangles St and s-. It has to be borne in mind that y (t) along 
La in (1.6) is not a priori known, hence it is necessary to establish in the final solu- 

tion the admissibility of assumptions made with respect to function y (t). Using formulas 
(1.2) and (1. 8) and Ohm’s law (1.1). from (1.4) we obtain for yi (2) the following 
homogeneous Riemann problem with discontinuous coefficients : 

yl+ (t) = - Y,-(t) along L, (1.9) 

For function \lrs (z) the Riemann problem is similar. The general solution of problem 
(1.9) which satisfies conditions (1.2) is 
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where c is a constant, K is a complete elliptic integral of the first kind, k is the el- 

liptic integral modulus, h is the band width, and sn, cn and dn are Jacobi’s functions. 

The term (cn u / sn u dn u)~~ is assumed to be the branch which is holomorphic in the 

rectangle S and is positive along the boundary ab . In accordance with (1.4) function 
\rt (z) defined b y f ormula (1.10) determines current distribution in S+. Let us consider 
the behavior of the electric field along the rectangle boundary. 

Along ab we have 
Y?t+ (z) = C (sin na - i cos ne) P (x) 

1 2E 
’ 

O<x<h 
From (1.4) and Ohm’s law we now have 

(1.11) 

(1.12) 

Transforming elliptic functions by standard formulas [4], along bc we obtain 

‘r,‘(Y) = - iCR (~1, R (Y) = [ 
sn (Ky / h; k) dn (Ky 1 h; k) 2~ 

cn (Ky / h: k) I 

k’ = 1/i - k.2, O<Y<l (1.13) 

and, consequently, 

jut (Y) = CR (Y), $ = + j,t (~1, j,t (y) = 0 (1.14) 

Expressions for the electric field along cd are of the form (1.11) and (1.12), except 
that P-l (x) is to be substituted for f’ (x). Similarly, in formulas for jyl (x) and 

Et,, (y) along da it is necessary to substitute in (1.13) and (1.14) R-l (y) for R (y).It 
will be seen that jr, (z),i.e. y (z) satisfy along matching lines Holder’s condition, 
which is in agreement with the previously made assumptions about y (x) in the Riemann 

problems (1.6). 
Constant C is determined by formula (1.3). Substituting into (1.3) jyl (2) from 

(1.11) and (1.12) and calculating the integral, we obtain 

c= 21 K (k) 

zhF [(l/2 + E), (l/a - E); 1; k2] 
(1.15) 

where F is a hypergeometric function. Formulas (1.4). (1.10) and (1.15) represent the 
complete solution of our problem. 

The pattern of field in rectangle S- is a mirror reflection of field S+ symmetric 
about the real axis. This configuration is repeated in subsequent pairs of cells. The 
derived solution shows that the current distribution materially depends on the interrela- 

tionship of local parameters of the medium in adjacent cells. 
Let us consider this problem in more detail. In the absence of the Hall effect (& = 

(j2 =0) the current in the band is uniform, i.e. ix = 0 and jy = I I h. This distribu- 
tion also obtains in the presence of the Hall effect, provided throughout the band the 



Hall coefficient R, (RH = 13 I aH) remains constant in an everywhere homogeneous 

magnetic field RHI = R,,(H, = II,) or, when HI i Hz, that the more genera I CYNI .- 
ditjon HHIH1= R,,H, is satisfied. In all other cases the flo~v of zlcctric. CIIrrcllt along 

the band is characterized by periodic buncsh- 

J 
‘* ing of streamlines at alternative boundaries 

of the band. 

The general pattern of the electric field 

may be considered to be rhe result of super- 

2 
position of two particular distributions of 

current, viz, one, of the uniform longitudinal 

current jy = const and the other of periodic 

current eddies generated by Hall’s electro- 

motive forces along the cell boundaries, 

I where the potentiality of the electric field 

is disturbed. 

The highest current concentration occurs 

along the contact lines of cells, where at one 

angle of the boundary the current infinitely 

increases (has an integrable singularity) and 

at the other vanishes altogether. These cur- 

Fig. 2 
rent distribution singularities at boundary 

angles alternate from one side of the band 

to the other. 

There exists on the whole a kind of spatial modulation of the current of a period de- 

termined by the cell dimension. As an illustration, the curves of relative current j *= 

hj, (x) / I are shown in Fig. 2 for four values of parameter CL = (o$n - o&l) /(ol -t_ a,)= 

0, 1, 3 and 10. The curves are constructed with the use of formulas (1.12) and (1.15) 

and relate to square cells (1/ h = 1). It will be seen from this diagram that the nonuni- 

formity of current distribution in the cell increases with increasing parameter CL. 

2, Anomalour conductivity of medium in a strong magnetic 
field, As seen from the derived solution the electric field pattern in the presence of 

Hall effect in the plasma is determined by the heterogeneous properties of the medium. 

This reflects the general tendency of current distribution in a heterogeneous plasma, 

which, owing the fluctuation of its parameters, generates in the medium electric current 

eddies of the order of magnitude of the size of fluctuations. Such eddies result in dis- 

tortion and entanglement of streamlines, the Joule dissipation increases, and the Hall 

field intensity diminishes. This phenomenon may be qualitatively linked with variation 

of the medium electric properties as a whole ; it can be defined by the effective values 

of conductivity (T,,~, and of the Hall parameter pert. The complex field pattern with 

local parameters CJ and fl of the medium is correlated to the “smoothed” field with 

effective parameters o,,, and pet,. With this approach it is possible to explain, within 

the limits of phenomenological theory, the physical aspects and the direction of the pro- 

cess in turbulent plasma by using Maxwell’s equations and Ohm’s law, without investi- 

gating the mechanism of plasma turbulence and resorting to equations of transport. 

The problem of determination of the medium electric properties by a given fluctua- 

tion level is very general, since the phenomena leading for various reasons to its strati- 
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fication can be included in the calculation scheme. The problem of determining a,ft 
and peff was solved in [5] for the case of two-phase fluctuations in which plasma para- 

meters had two discrete values in random distributed regions of equal area and consider- 

ably smaller dimensions than the complete system. The input equations (1.1) used here 
were also used for deriving the solution in [5]. If, however, the range of fluctuations is 
comparable to the characteristic dimension of the system, or they are orderly distributed 

in space, as they are in this case, the effective parameters must be determined by solving 

the boundary value problem. 
Let us match an over-all uniform current distribution j, = 0. and iv = 1 / h in a 

band containing plasma with constant parameters oefl and Be,, with the derived nor+ 
uniform current distribution. The condition of their equivalence is the equality in both 

cases of the total current flowing through the band, of the Hall emf, and of the voltage 

drop over the length 2 1 of the band. 
In the first case these two voltages are defined by the formula 

u,=- ) 

k?ff I u 2 
deff 

=+-I 
deff 

(2.4) 

For a nonuniform current distribution the Hall emf along a contact line of adjacent 

cells and the voltage drop over the length of two cells, in accordance with (1.12) and 

(1.4), respectively, are defined by formulas 

UH = c Pl + Pa -1 + 61P2 - a?,&, 2 -%” p @.) & 

61 + 62 I ( )1 s ,mia.! _ 
0 

u+-+-&(y)dy 
0 

(2.2) 

Integrating (2.2) and substituting in the derived formulas the constant defined by(1.15) 
we obtain 

(2.3) 

where F is a hypergeomeuic function, and k and k’ = -1/l -k2 are the moduli of 
elliptic integrals of the first kind. Equating the expressions for UH and u defined, 

respectively, by (2.1) and (2.2), we obtain two expressions from which follow formulas 

5 (2.4) 

ijeff = 

The derived formulas determine the effective parameters of the medium for 1 / h (( 1. 
This condition must be satisfied, since the Hall emf varies along the band, when the 
medium parameters are variable. If this condition is satisfied, such variations can be 

neglected, otherwise it is necessary to average the Hall emf with respect to length. We 
would, furthermore, point out that for Z/h 2 1 the introduction of effective parameters 
in the considered model has no purpose, since all characteristic dimensions of the non- 
uniformities are not small in comparison with the characteristic dimension (h) of the 
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band. 

Let us apply the derived formulas to specific cases. 

1) If condition pi ! o1 = ]SZ / o1 is satisfied, formulas(&4) reduce to 
251% 25132 ($1 i- 82) 

3 
- -.- 

e!i - 61 + a2 ’ 
3 (6 = 1) (YJ) 

e/i = (51 + S# 

In this case the current distribution in the band is uniform (i, = 0 and i!, = const). 

In the elementary theory of plasma the condition fil / oi = pa / IS, is equivalent to the 

equality H, / n, = Ha / n, , when o = nestirr, and Ii = e%H I me (n. 0. T and m are the 

concentration, the charge, the collision time, and the mass of electrons, respectively, and 

c is the speed of light), and, if the magnetic field is uniform (H, = Hz) , the fulfilment 

of this condition indicates the equality of electron concentration in adjacent ceils. 

Velikhov’s suggestion that it is possible to suppress ionization instability in low tempe- 

rature plasma by complete ionization of the additive is based on this property. 

3) If fi = fii = pZ and the plasma heterogeneity is related to variation of conduc- 

tivity (ol # US), then for considerable values of the dimensionless parameter p2A2 > 2 

(A = 1 u, - u2 ) ! (01 f 02) is the relative fluctuation of conductivity) we have 

216152 21315: 
Seff = hp(61--aj ’ Pefi = h 1 31” - 39 1 

(2.6) 

In the derivation of (2.6) from (2.4) allowance was made for 6 - Z/ h, when fi2A2 $Q 1. 

Formula (2.6) shows that with increasing magnetic field intensity the medium electric 

conductivity diminishes and the Hall parameter becomes saturated. Even a small non- 

uniformity of conductivity at high Hall parameters results in appreciable variation of 

properties of the medium as a whole. This defines the anomalous properties of plasma 

in a strong magnetic field. In the model considered here the conductivity diminishes 

in inverse proportion to the magnetic field intensity, while the Hall parameter is inde- 

pendent of the latter. It is interesting to note that a similar form of dependence on a,jf 

and fieff in a model of plasma with random distribution of nonuniformities is established 

in [S]. A distinctive feature of the derived result is that oeff and &ff depend on linear 

dimensions of cells and that for o2 / or --+ 0 peff behaves as &o, / ho,, i.e. it becomes 

saturated at the level determined by the ratio o2 i q, as distinct from the results in [S], 

where P,_ff -+ 1, when o2 / or + 0. 

3) Another limit case in which o = oi = ‘Jo and p1 # fi2 can be similarly inves- 

tigated. If the fluctuations are small ]fi1 - fiz] 4 2, then o,tf --+ o and fief/ -+ fir - I&. 

while for 1 fil - fi2 I > 2 we have 

I (3, -!- 311 
Oeff = h I$‘” p> I ’ kff = h 1 p1 - p:! ) 

(3.7) 

This shows that the asymptotic formulas which define the properties of plasma in a strong 

magnetic field are the same, independently of whether it is only the Hall parameter or 

only the conductivity that fluctuates. 

For analyzing the behavior of plasma in moderate magnetic fields, or when both local 

parameters o and b vary simultaneously, it is necessary to use the general formulas 

(2.4). 

3. Effective plasma parameters in the prr8cnce of ion slip. 
In a strong magnetic field the Larmor rotation in low temperature plasma is imparted 

not only to electrons, but also to ions, hence Ohm’s law is of the form 
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j+-$jxH - -$$(jxH)xH-sE=O 

which is different from (1.1). Taking into account the ion slip does not require a new 

mathematical formulation of the problem. All necessary formulas are obtained from 
the previously derived expressions by substituting in the latter o,* and fiv* (v = 1, 2) 
for UT, and $., defined by 

P. 
Q” *= % 

I$_ T”PV2 ’ 
BY* = * +;&s 9 TV = g 

Asymptotic formulas for the effective parameters of plasma in a strong magnetic field 
in which there is a considerable ion slip (y$,,s> 1) are in all cases of the same form 

261G2 2a152P1P2 (TIP1 -i- r2h 
Qeff = nPl”oa + raPa2a1 ' 

Peff = (-f1&2az + T2P2w2 

The formulas for the plasma effective characteristics are now independent of linear 
dimensions of cells and the current distribution in the band is uniform. The effective 

Hall parameter is no longer saturated, as in (2) and (3) above, but deceases with increas- 
ing magnetic field intensity. On the whole, function &ff (H) is characterized by the 

presence of a maximum. In weak magnetic fields be,f increases proportionally to H, 

while in strong magnetic fields, in which ion slip occurs, flrff decreases in inverse pro- 
portion to H. 

4. The solution derived in Sect.1 is also applicable to the particular case of two- 
dimensional current distribution in a rectangularregionwith electrodes,which is relevant to 

the calculation of the field of a semiconductor plate with two symmetrically located 

electrodes in a uniform magnetic field. In this case the solution is obtained by passing 
to limit o2 - .w. It differs from (1.10) and (1.15) only by the expression for the Hall 
angle XX, instead of (1.10) we have 

e=+-arc&(--BP), 0<1e,<+ (3 - PI) (4.1) 

The voltage drop between the electrodes is calculated by formula 
I 

u = -g \ 11 (Y) dY (4.2) 

0 
where C and I? (y) are defined by formulas (1.15) and (1.11) (for o2 --, 00). Using 
(4.2), we obtain for the plate total resistance the expression 

where d is the plate thickness. Formula (4.3) reduces to the simple formQ=fi + p” /ad, 
when the plate is square (1 i h = 1). 
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The solution of the non-self-similar problem of explosion in a medium with 

variable initial density whose distribution is subject to power law is considered 

with variable initial pressure taken into consideration. An exact analytical solu- 

tion is obtained in particular cases for the initial phase of explosion. The depen- 

dence of dimensionless parameters of motion on the geometric coordinate and 
the shock wave radius, which is obtained by solving differential equations, is de- 
rived in the solution of the complete non-self-similar problem. Derived solu- 
tions are used for calculating cases of spherical and cylindrical symmetry of 
explosion for various values of the determining parameters. 

The one-dimensional self-similar problem of a strong point explosion was 
formulated and solved by Sedov [1, 21 on the assumption that the initial pressure 

of gas, which is small in comparison with the pressure at the front, can be neg- 

lected and that the initial density is constant. Strong explosion in a medium of 

varying density dependent on the geometric coordinate according to the power 

law was considered in fl, 31. When counterpressure is taken into consideration, 
the problem becomes non-self-similar. Its numerical solution appeared in seve- 

ral publications [4 - 91, in which initial pressure was assumed constant. 

The non-self-similar problem of explosion in a medium of varying initial 
density P1 and varying initial pressure pr is considered here. These parameters 
are defined by p1= Ar-m, pl = 0-X (0.1) 

If H. = 2~ - 2, then, in the presence of a gravitational field, the initial density 
and pressure distributions (0.1) satisfy the equilibrium equations of the medium 
D]. A particular case of this problem in linearized formulation for 3~ = o was 
investigated in p2, 133. 

Considerable calculation difficulties encountered in non-self-similar problems 
have led to the appearance of several approximate methods [3-7, 111. Sedov 
had suggested to construct approximate solutions of problems of unsteady motion 


